Poster No. 69 NTM Conference at CSU Fort Collins, CO May 27-30, 2025

Results: Phase 2 Study (EBO-301) to Assess the Efficacy, Safety, and PK of Oral Epetraborole (EBO) in Patients with Treatment-refractory *Mycobacterium avium* Complex Lung Disease (TR-MAC-LD)

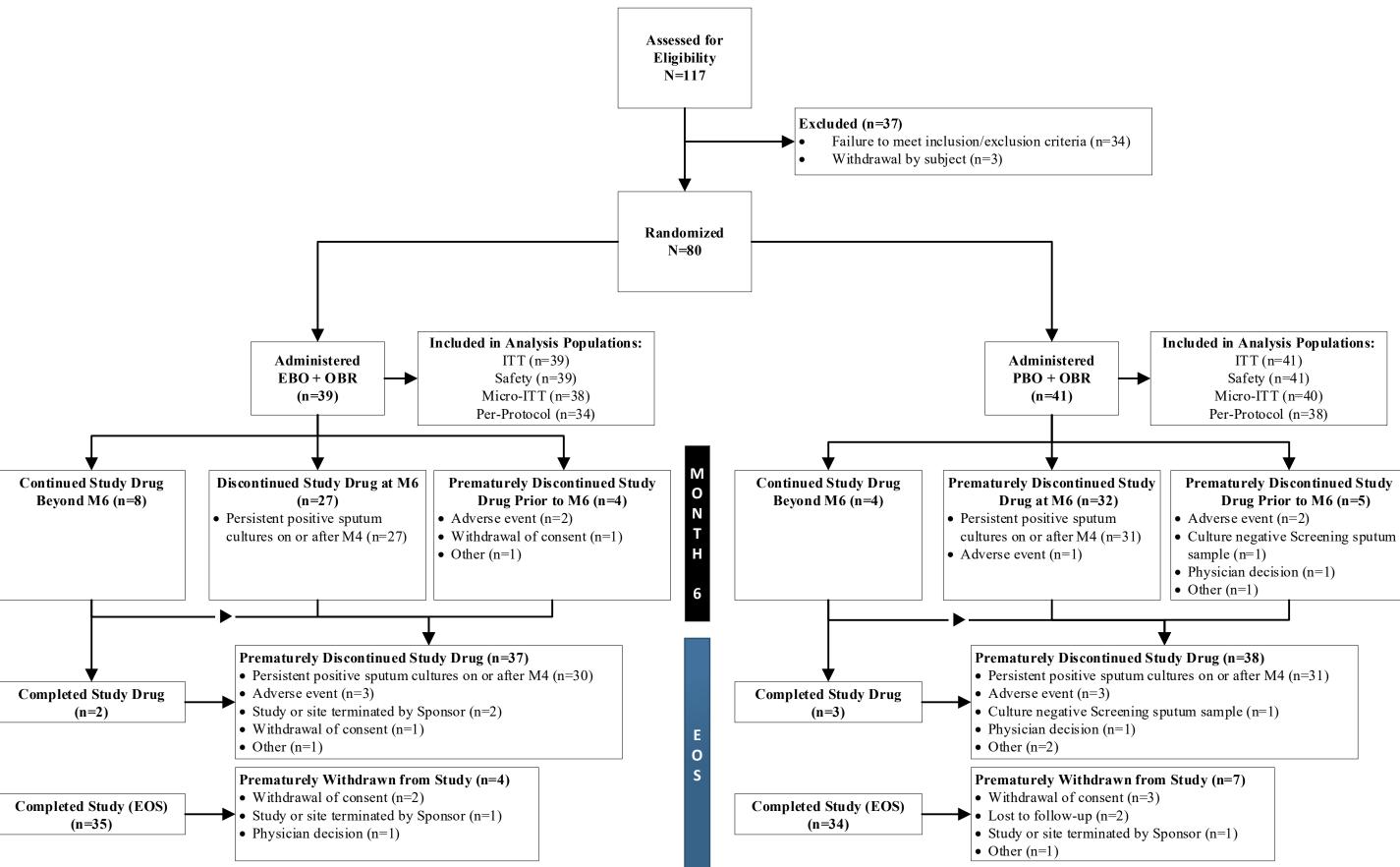
Eric Easom^{1†}, Alex Smith^{1‡}, Lynn Connolly^{1‡}, Tiffany Keepers White^{1‡}, Jennifer Huber^{1‡}, Bibiana Castañeda-Ruiz^{1‡}, Jennifer Long^{1‡}, Kevin Krause^{1‡}, Donald M. Bushnell², Paul B. Eckburg^{1‡} ¹AN2 Therapeutics (Menlo Park, CA), ²PPD Evidera Patient Centered Research (Wilmington, NC)

INTRODUCTION

AN2Therapeutics Menlo Park, CA 94027

www.AN2therapeutics.com

- AN2 is developing epetraborole (EBO) tablets for the treatment of serious infections for new antimicrobial therapy in combination regimens, such as lung disease (LD) caused by NTM
- Treatment options for treatment-refractory Mycobacterium avium complex lung disease (TR-MAC-LD) are limited and often poorly tolerated
- Epetraborole is a boron-containing inhibitor of bacterial LeuRS, which is an essential enzyme in protein synthesis
- AN2 Therapeutics has completed a Phase 2 trial that randomized TR-MAC-LD patients to EBO or placebo (PBO) on top of an investigator-specified optimized background regimen (OBR)


-10

-30

• The design of this study is presented in a companion poster; study outcomes are presented herein

RESULTS

Figure 1. Enrollment and Disposition

Table 5. Primary Endpoint (in US): MACrO₂ PRO Response Rate at Month 6 (Micro-ITT Population)

	EBO+OBR	PBO+OBR	Treatment Comparison			
Clinical Response	(N=38) n (%)	(N=40) n (%)	Difference (%)	95% CI	p-value	
Response	15 (39.5)	10 (25.0)	13.9	(-6.8, 33.8)	0.1863	
Failure	23 (60.5)	30 (75.0)	-	-	-	

Table 6. Key Secondary Endpoint (in US): Sputum Culture Conversion by Month 6 (Micro-ITT Population)

EBO+OBR	PBO+OBR	Treatment Comparison
(NI-20)	(N = 40)	

Table 8. Summary of TEAEs Through EOS (Safety Population)

	EBO+OBR	PBO+OBR
	(N=39)	(N=41)
Participants With at Least 1:	n (%)	n (%)
TEAE	37 (94.9)	35 (85.4)
Study drug-related TEAE	30 (76.9)	10 (24.4)
Treatment-emergent AESIs	27 (69.2)	5 (12.2)
Anemia/Hgb decline	22 (56.4)	0 (0.0)
GI intolerance	14 (35.9)	5 (12.2)
TEAE leading to premature discontinuation of study drug	3 (7.7)	3 (7.3)
TEAE by maximum severity		
Mild	17 (43.6)	16 (39.0)
Moderate	16 (41.0)	14 (34.1)
Severe	4 (10.3)	4 (9.8)
Life-threatening	0 (0.0)	1 (2.4)
Death	0 (0.0)	0 (0.0)
Study drug-related TEAEs by maximum severity		
Mild	18 (46.2)	7 (17.1)
Moderate	11 (28.2)	2 (4.9)
Severe	1 (2.6)	1 (2.4)
Life-threatening	0	0
Death	0	0
Treatment-emergent SAEs	4 (10.3)	9 (22.0)
Study drug-related TESAEs	1 (2.6)	1 (2.4)

(N=38) (N=40) **Clinical Response** n (%) n (%) 95% CI Difference (%) p-value 5 (13.2) (-12.0, 19.8)0.6366 4 (10.0) Response 3.4 33 (86.8) 36 (90.0) Failure

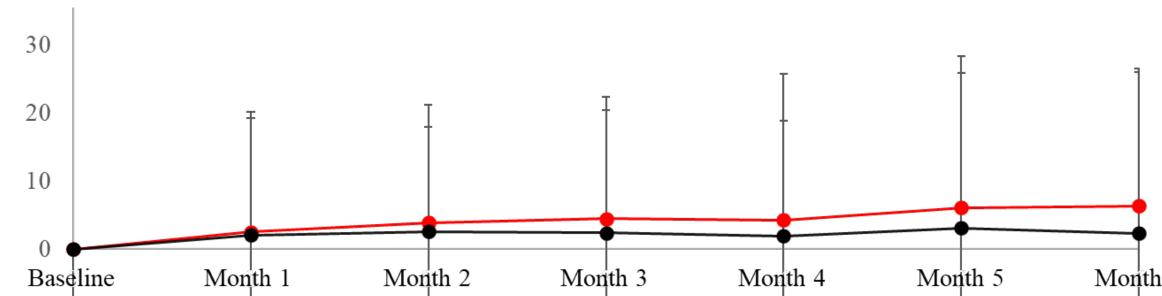
 Serial MIC testing (maximum tested EBO MIC value >32 μg/mL) demonstrated substantial variability in MIC from baseline through all post-baseline isolates

20/78 (25.6%) patients had a post-baseline isolate with a ≥4-fold increase in EBO MIC

 However, 11 of these 20 isolates (4/38 EBO and 7/40 PBO) had a subsequent MAC isolate with an EBO MIC within 2-fold of the MIC of the baseline isolate

• At Month 6 of treatment, all but 2 patients (1 EBO; 1 PBO) with an on-treatment isolate with EBO MIC >32 μ g/mL had a subsequent isolate with MIC <32 μ g/mL

 Laboratory testing variability, transient shifts in MIC, and/or infection with multiple different MAC pathogens might explain these observations


Table 1. Demographics and Baseline Characteristics Through Month 6

	U		_
	EBO+OBR	PBO+OBR	
	(N=39)	(N=41)	F
Age, years Mean (SD)	64.7 (10.11)	64.7 (9.97)	-
Sex, n (%) Female	27 (69.2)	30 (73.2)	
Race, n (%)			S
Asian	26 (66.7)	25 (61.0)	Ν
White	13 (33.3)	15 (36.6)	L
Black or African American	0	1 (2.4)	ç
Region, n (%)			
US	11 (28.2)	15 (36.6)	
APAC	28 (71.8)	26 (63.4)	
BMI <18.5 kg/m ² at Baseline, n (%)	6 (15.4)	15 (36.6)	
Predominant NTM Disease Classification, n (%)			
Non-cavitary nodular bronchiectatic	20 (51.3)	18 (43.9)	
Cavitary nodular bronchiectatic	13 (33.3)	21 (51.2)	:
Fibrocavitary	6 (15.4)	2 (4.9)	
Baseline Use of ALIS, n (%)	9 (23.1)	6 (14.6)	
Time Since Initial MAC Diagnosis, years			
Mean (SD)	9.4 (6.07)	9.2 (5.84)	~
Median (min, max)	8.0 (<1, 22)	9.0 (1, 24)	
Time Since First Diagnosis of Treatment Refractory Disease, years	· · · · · ·		
Mean (SD)	4.35 (4.364)	4.45 (4.088)	
Median (min, max)	2.85 (0.2, 19.6)	3.25 (0.2, 14.6)	
Underlying respiratory illness (e.g., bronchiectasis, COPD), n (%)	34 (87.2)	38 (92.7)	

Table 7. Secondary Endpoint: Change from Baseline in QOL-B Respiratory Symptoms Score at Month 6 (Micro-ITT Population)

	EBO+OBR	PBO+OBR	Treatment Comparison		
Statistic	(N=38)	(N=40)	Difference	95% CI	p-value
Ν	34	35	-	-	_
Least Squares Mean (SE)	7.20 (2.447)	0.30 (2.569)	6.90	(0.45, 13.36)	0.0365
95% CI	(2.31, 12.09)	(-4.83, 5.43)	-	-	-

Figure 2. QOL-B RD Score Change from Baseline Over Time

Table 9. TEAEs in ≥10% EBO-Treated Patients Through EOS (Safety Population)

	EBO+OBR (N=39)	PBO+OBR (N=41)
Preferred Term	n (%)	n (%)
Participants With at Least 1 TEAE	37 (94.9)	35 (85.4)
Anaemia	14 (35.9)	0
Dizziness	7 (17.9)	0
Haemoglobin decreased	5 (12.8)	0
Headache	4 (10.3)	6 (14.6)
COVID-19	4 (10.3)	5 (12.2)
Diarrhoea	4 (10.3)	3 (7.3)
Pyrexia	4 (10.3)	3 (7.3)
Back pain	4 (10.3)	2 (4.9)

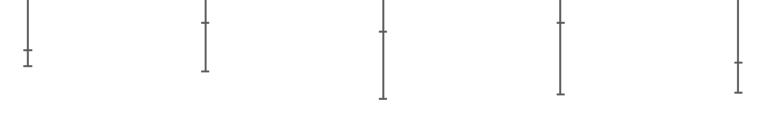
Anemia/Hgb decrease was the most frequently reported drug-related TEAE

 Hgb values declined gradually with stabilization by Month 3 during EBO treatment, and returned to or toward baseline values post-treatment

• Decreases in Hgb were generally monitorable, manageable, and tolerated in this elderly patient

Table 2. Baseline OBR Through Month 6

	EBO+OBR	PBO+OBR
Characteristic	(N=39)	(N=41)
Statistic/Category	n (%)	n (%)
Number of Agents in Baseline OBR		
2	9 (23.1)	7 (17.1)
3	14 (35.9)	22 (53.7)
4+	16 (41.0)	12 (29.3)
Patients Initiating Any OBR Therapy at Screening	3 (7.7)	0 (0.0)
Baseline OBR Antibiotic Class		
Macrolide	30 (76.9)	35 (85.4)
Ethambutol	30 (76.9)	33 (80.5)
Rifamycin	28 (71.8)	30 (73.2)
ALIS	9 (23.1)	6 (14.6)
Non-liposomal amikacin	1 (2.6)	5 (12.2)
Clofazimine	11 (28.2)	10 (24.4)
Other	15 (38.5)	12 (39.3)
Most Common Unique Baseline OBR		
Ethambutol/macrolide/rifamycin	9 (23.1)	14 (34.1)
Ethambutol/macrolide	3 (7.7)	4 (9.8)
Ethambutol/macrolide/rifamycin/other	4 (10.3)	2 (4.9)


Table 3. Baseline Pathogens (Micro-ITT Population)

	EBO + OBR (N=38)	PBO + OBR (N=40)
Pathogen	n (%)	n (%)
Mycobacterium avium	27 (71.1)	22 (55.0)
Mycobacterium intracellulare	11 (28.9)	21 (52.5)

• 3 patients in the PBO group had infection with both pathogens

• EBO MIC₅₀ and MIC₉₀ were 8 and 16 μ g/mL, respectively, with an MIC range of 0.25 to >32 μ g/mL

• 75.3% (61/81) and 90.1% (73/81) of isolates had EBO MIC of ≤ 8 and $\leq 16 \mu g/mL$, respectively

● Epetraborole + OBR ▲ Placebo + OBR

Baseline is defined as the last entry recorded or updated by the patient on or prior to the first dose of study drug + 1 day (ePRO-specified close of window to further entry by patient)
QOL-B RD scores range from 0 to 100 (higher scores indicate better HRQoL)

population with advanced MAC-LD and underlying chronic respiratory illness

Abbreviations: AESI=adverse event of special interest; ALIS=amikacin liposome inhalation suspension; APAC=Asia-Pacific; COPD=chronic obstructive pulmonary disease; EBO=epetraborole; EOS=End of Study; GI=gastrointestinal; Hgb=hemoglobin; HRQoL=health related quality of life; I=intermediate; OBR=optimized background regimen; MAC=*Mycobacterium avium*; M=month; MIC=minimum inhibitory concentration; Micro-ITT=Microbiological Intent-to-Treat; PBO=placebo; PRO=patient-reported outcome; QOL-B=Quality of Life Bronchiectasis; R=resistant; RD=respiratory domain; S=susceptible; SAE=serious adverse event; TEAE=treatment-emergent adverse event; TR-MAC-LD=treatment-refractory *Mycobacterium avium c*omplex lung disease.

CONCLUSIONS

- This study enrolled patients with severe, advanced TR-MAC-LD, including high rates of cavitary disease and long duration of disease
 - Baseline antimicrobial resistance rates in both treatment arms were high, including 32.1% to macrolides and 32.1% to ALIS
- Clinical response rates for both the MACrO₂ and QOL-B RD PROs were higher in the EBO+OBR group,
- The QOL-B RD change from baseline to Month 6, as analyzed by the least squares mean method, achieved nominal statistically significant improvement in EBO+OBR vs. PBO+OBR treated patients (p=0.0365)
- Sputum culture conversion rates were low and similar between treatment arms
- EBO MIC testing of postbaseline MAC isolates in both study arms demonstrated high variability
- Approximately 25% of patients had a post-baseline isolate with a ≥4-fold increase in EBO MIC
- However, 4/38 EBO and 7/40 PBO patients had a subsequent MAC isolate with an EBO MIC within 2-fold of the MIC of the baseline isolate
- Sustained EBO MICs >32 µg/mL were infrequent (1 EBO and 1 PBO)
- EBO was generally tolerated with few study drug discontinuations, study withdrawals, and SAEs
- GI intolerance events were generally mild to moderate in severity and infrequently led to study drug discontinuation
- As anticipated from preclinical and Phase 1 data, anemia/Hgb decrease was the most frequently reported drug-related TEAE
- Hgb values declined gradually with stabilization by Month 3 during EBO administration, and returned to or toward baseline values post-treatment
- Decreases in Hgb were generally monitorable, manageable, and tolerated in these chronically infected, older patients

Table 4. Baseline Pathogen Susceptibility to Selected OBR Agents

(Micro-ITT Population)

Baseline Pathogens from all Patients Combined (N=81) ^a					
MIC (mg/L)			Interpretation, n (%)		
Range	MIC ₅₀	MIC ₉₀	S	I	R
≤0.25 - >32	4	>32	53 (65.4)	2 (2.5)	26 (32.1)
4 - >128	64	>128	55 (67.9)	-	26 (32.1)
4 - >128	64	>128	15 (18.5)	16 (19.8)	50 (61.7)
≤0.25 - >4	4	>4	21 (25.9)	19 (23.5)	41 (50.6)
4 - >16	>16	>16	9 (11.1)	17 (21.0)	55 (67.9)
-	Range ≤0.25 - >32 4 - >128 4 - >128 ≤0.25 - >4	MIC (mg/L)RangeMIC $_{50}$ $\leq 0.25 - >32$ 4 $4 - >128$ 64 $4 - >128$ 64 $4 - >128$ 64 $4 - >128$ 4	MIC (mg/L)RangeMIC $_{50}$ MIC $_{90}$ $\leq 0.25 - >32$ 4>32 $4 - >128$ 64>128 $4 - >128$ 64>128 $4 - >128$ 64>128 $\leq 0.25 - >4$ 4>4	MIC (mg/L)IntRangeMIC50MIC90 $\leq 0.25 - >32$ 4 $4 - >128$ 64 $4 - >128$ 64 $4 - >128$ 64 $4 - >128$ 64 $4 - >128$ 64 $4 - >128$ 64 $4 - >128$ 64 $4 - >128$ 64 $4 - >128$ 21 (25.9)	MIC (mg/L)Interpretation, nRangeMIC50MIC90SI $\leq 0.25 - >32$ 4>3253 (65.4)2 (2.5) $4 - >128$ 64>12855 (67.9)- $4 - >128$ 64>12815 (18.5)16 (19.8) $\leq 0.25 - >4$ 4>4>421 (25.9)19 (23.5)

The preliminary efficacy signal seen with the MACrO₂ and the QOL-B RD PROs aligns with FDA's focus on the patient voice in evaluating treatment response in NTM-LD; however, the key secondary endpoint of SCC was not met
 Phase 3 analyses have prespecified the QOL-B RD PRO as the primary efficacy endpoint

† Main/presenting author
 ‡ Author contributions made while affiliated with AN2 Therapeutics, but author may no longer be affiliated with the organization
 CONFLICTS OF INTEREST:
 DMB is a paid consultant to the pharmaceutical industry, including AN2 Therapeutics.

ACKNOWLEDGMENTS:

The MACrO2 Study Clinical Investigators
The AN2 Clinical Operations Team: Kevin O'Shea, Linda Kammerer, Dave Clarke, Gabrielle Khedr, Julia Chou, Scott Yeats
AN2 Safety: Julie Rosenberg